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ABSTRACT

With the expansion of urban and economic landscapes, the volume of solid waste generated
globally surges, posing significant environmental and public health challenges. Sustainable
waste segregation is essential for proper disposal, promoting recycling, and reducing landfill
accumulation, thereby supporting ecological balance. Existing studies leverage deep learning
for solid waste classification, but mostly datasets consist of single-object images on plain
backgrounds, which limits real-world applicability. To address this gap, a diverse dataset of
22,000 images spanning 12 waste categories is compiled from multiple public sources. Six
state-of-the-art pre-trained convolutional neural networks—DenseNet201, ResNetl01,
EfficientNetB7, ConvNeXtBase, MobileNetV2, and InceptionV3—are fine-tuned using
transfer learning. Among these, ConvNeXtBase achieves the highest individual test accuracy
of 98.13%. To further improve performance, a hybrid model combining DenseNet201 and
ConvNeXtBase 1s developed using an attention-based fusion mechanism. This model
achieves a test accuracy of 98.45%, outperforming all single models. The results demonstrate
the effectiveness of attention-driven ensemble learning in complex waste classification tasks.
Future research emphasizes real-time deployment, adaptability across diverse waste streams,
and integration with edge devices while promoting sustainable waste management practices.
To further enhance accuracy, the study suggests expanding datasets, optimizing attention
mechanisms, and experimenting with architectures such as Vision Transformers.

Keywords: deep learning, hybrid model, transfer learning, ensemble learning, solid waste,
sustainable waste management

1. INTRODUCTION

Solid waste refers to the wide range of discarded materials generated as a result of various
human activities in everyday life. This includes municipal household waste, medical and
biomedical waste, construction and demolition debris, as well as industrial by-products. Amid
growing human development, global solid waste generation has escalated, creating significant
environmental and health concerns. Municipal solid waste generation is anticipated to
escalate significantly, growing from 2.1 billion tonnes in 2023 to an estimated 3.8 billion
tonnes by 2050, reflecting the mounting pressure of global consumption and urbanization [1].
A study by The Energy and Resources Institute (TERI) reveals that India produces
approximately 62 million tons (MT) of waste annually. Of this, only 43 MT are collected, 12
MT are processed before disposal, while the remaining 31 MT end up in landfills. Projections
by the Central Pollution Control Board (CPCB) suggest that the country’s yearly waste
generation could escalate to 165 million tons by 2030, underscoring a pressing need for
improved waste management systems [2]. Despite the massive quantities of waste produced
daily, only a small fraction is effectively recycled or processed in an environmentally
responsible manner. A large portion of solid waste ends up in landfills or is improperly
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disposed of in open spaces and water bodies. This mismanagement leads to serious
environmental issues, including soil contamination, air and water pollution, and the
proliferation of disease-causing pathogens. Leachate from landfills contaminates
groundwater, while the incineration of waste without proper controls releases harmful gases,
contributing to air quality degradation and climate change.

The consequences of inadequate solid waste management extend beyond environmental
damage. It directly impacts public health. Exposure to improperly disposed waste can cause
respiratory ailments, vector-borne diseases, skin infections, and long-term health
complications, particularly among vulnerable populations such as children, the elderly, and
waste workers [3].

Given these far-reaching implications, effective solid waste management is critical to
achieving urban sustainability and protecting ecological systems. It plays a pivotal role in
conserving natural resources through recycling and reuse, reducing environmental pollution,
and safeguarding human health. Therefore, developing a scalable, efficient, and intelligent
waste classification system is essential to support responsible waste management strategies
and promote a cleaner, healthier, and more sustainable urban environment [4].

Conventional methods for waste classification often rely on manual sorting, which is not only
slow and resource-intensive but also prone to human error. This inefficiency hampers
effective recycling efforts and contributes to the growing burden on landfills. Advancements
in Artificial Intelligence (AI) have emerged as powerful tools for revolutionizing the waste
management industry. Al technologies are increasingly being leveraged to optimize waste
collection routes, predict waste generation trends, detect bin fill levels, and forecast waste
characteristics with greater accuracy [5]. In this context, deep learning has also emerged as a
promising approach to automate waste classification by leveraging its ability to learn
complex patterns from visual data.

Recent advances in deep Convolutional Neural Networks (CNNs) have demonstrated
impressive performance across numerous image classification tasks, including object
detection, industrial quality control, and medical imaging. These successes have inspired a
growing body of research focused on applying CNNs to solid waste classification. However,
a critical limitation persists in most existing approaches: they are trained and evaluated on
simplistic datasets composed primarily of single objects captured against uniform, white
backgrounds [6]. Such datasets fail to capture the complexities of real-world waste disposal
environments, where waste items often appear in varied orientations, under different lighting
conditions, with cluttered or textured backgrounds, and frequently alongside other waste

types.

To address this gap, we propose a robust, real-world-oriented solution for solid waste
classification. Our research introduces two key contributions. First, we present a curated
dataset comprising 22,000 images across 12 diverse waste categories: glass, e-waste, clothes,
shoes, plastic, cardboard, paper, construction waste, medical waste, metal, organic waste, and
trash. Unlike conventional datasets, this dataset includes both single and multiple objects per
image, captured in varied indoor and outdoor environments, thereby significantly enhancing
the dataset’s representativeness and realism.

Second, we developed a hybrid deep learning model that leverages the complementary
strengths of two high-performing CNN models: DenseNet201 and ConvNextBase. By fusing
the feature representations of these pretrained networks, our hybrid model captures diverse
spatial hierarchies and contextual information that individual models may overlook. This
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ensemble-like fusion approach, combined with transfer learning and data augmentation
strategies, substantially improved classification accuracy and generalizability under real-
world conditions.

Through extensive experimentation, we have demonstrated that our hybrid model
consistently outperforms individual CNN architectures, achieving high accuracy and
robustness even in challenging scenarios involving lighting variations and object clutter. By
integrating a rich dataset with a hybrid classification framework, our research aims to move
closer to deployable, real-time waste classification systems supporting automated sorting in
recycling plants and municipal waste management systems.

This research paper is organized as follows: Section 2 reviews the existing literature related
to solid waste classification using deep learning techniques. Section 3 provides a detailed
description of the curated dataset, the pretrained models employed, and the architecture of the
proposed attention-based hybrid model. Section 4 presents a comprehensive evaluation of the
proposed approach using various performance metrics to validate the effectiveness. Finally,
Section 5 summarizes the findings and suggests potential paths for future research.

2. LITERATURE REVIEW

This literature review highlights the emerging importance of deep learning, namely CNNs, as
a powerful tool for accurate and automated solid waste classification. The review
demonstrates that researchers have used transfer learning and hybrid model architectures to
improve classification performance on solid waste datasets. The review also covers a broad
spectrum of state-of-the-art techniques ranging from standalone CNN-based models to
sophisticated ensemble and hybrid models, revealing significant advances in the field while
also identifying ongoing challenges and research gaps.

The study [7] utilizes CNN, specifically a pretrained ResNet-50 model with transfer
learning, to categorize waste into six types. The approach handles images with multiple
objects by employing a sliding-window technique for initial segmentation and Gaussian
clustering to pinpoint the location of classified items. While the model achieved a high
classification accuracy of 92.4% on individual objects, the overall detection rate in simulation
for mixed waste piles was 48.4%, highlighting challenges in object detection and
segmentation under varying conditions.

The authors [8] evaluated various deep CNN models for image-based waste segregation,
combining existing datasets with newly collected images. The study utilized a dataset of 3102
waste images organized into four categories: paper, plastic, metal, and glass. Through transfer
learning and fine-tuning, the researchers found that the ResNetl8 architecture performed
best, achieving a validation accuracy of 87.8% in classifying waste materials. Plastic had a
lower correct prediction rate (82.8%) compared to other waste types because of frequent
changes in shape, size, and color.

The authors [9] proposed utilizing transfer learning, leveraging three distinct pretrained CNN
models (VGG19, DenseNet169, and NASNetLarge), to improve classification accuracy. By
constructing a candidate classifier from each pretrained model and selecting the optimal
output, their approach enhances the overall classification accuracy across different waste
subcategories. The proposed model demonstrates superior performance compared to existing
methods on two distinct waste image datasets, achieving an accuracy of 96.5% and 94%,
respectively. Although the dataset consists of 5000 waste images divided into six main
categories (glass, paper, plastic, metal, textile, and organic waste) and 12 subcategories,
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accurate classification and identification of these is difficult because the shape of objects
changes dramatically as they are discarded. To learn feature parameters, a dataset with a clear
classification is necessary.

The study [10] compares the performance of four pre-trained CNN models (ResNet50,
DenseNet169, VGG16, and AlexNet) trained on an augmented dataset of six waste
categories: cardboard, glass, metal, paper, plastic, and trash, with about 4,163 total images.
The experimental results indicate that DenseNet169 performed the best overall, with an
accuracy of 94.9%, while ResNet50 achieved a similar performance, with 93.4% accuracy.
Although DenseNet169 was the best-performing model, trash and glass were found to be the
most frequently misclassified images. As a result, additional clear images of these categories
are required.

The authors [11] presented a systematic approach to improve the accuracy of image-based
waste classification models using transfer learning and data augmentation techniques. It
focuses on building upon the IBM WasteNet project, which aims to enhance recycling by
employing Al for waste sorting. The research provides detailed insights into model training
decisions and demonstrates significant improvements in classification accuracy, with test
accuracy reaching 95.40%. However, deep architectures, such as EfficientNets, can be
explored to implement real-time classification on embedded devices.

The authors [12] introduced a framework employing the EfficientNet-B0O model, fine-tuned
with region-specific image datasets, to improve the accuracy and efficiency of municipal
solid waste categorization. They compare their approach to existing techniques and highlight
the reduced computational resources required by their method while achieving comparable
accuracy to more complex models, ultimately aiming to automate and optimize waste
management processes. The proposed model achieved an accuracy of 85%. This study uses
only EfficientNet B0 to classify solid waste. However, EfficientNet-BO to B7 can be used to
explore transfer learning for even greater accuracy.

The study [13] explores the effectiveness of an ensemble approach that combines multiple
pretrained CNN models—InceptionResNetV2, EfficientNetB3, and DenseNet201—for
classifying landfill waste into nine categories. The ensemble model outperformed individual
CNNss, achieving higher prediction precision (90% compared to 86—88%) while maintaining
comparable or lower computational costs. Despite its strong overall performance, the model
faced challenges in accurately distinguishing between waste classes with visually similar
features.

The authors [14] highlight the inefficiencies of traditional manual methods and propose a
smart system, Learning Approach with a Deep Neural Network for Smart systems (LADS),
which leverages deep neural networks, specifically a CNN, for automated waste
classification. The LADS model demonstrated superior accuracy (94.53%) in categorizing
waste into organic and recyclable compared to existing pre-trained models like AlexNet,
VGG16, and ResNet34. The study [15] addresses the critical global issue of poor waste
segregation by proposing an improved Deep Convolutional Neural Network (DCNN) for
automated classification of organic and recyclable waste. The improved DCNN model,
utilizing Leaky-ReLU as an activation function and dropout for regularization, achieved a
classification accuracy of 93.28%. This performance surpasses that of several other popular
deep learning models, including VGG16, VGG19, MobileNetV2, DenseNetl21, and
EfficientNetBO0, highlighting its effectiveness for binary waste classification. The authors [16]
proposed a hybrid CNN-LSTM model with transfer learning for smart waste classification,
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aimed at promoting sustainable development. Waste was categorized into recyclable and
organic classes by combining spatial feature extraction using CNN with temporal sequence
learning through LSTM. Transfer learning with ImageNet was employed to enhance
classification performance, and an improved data augmentation technique was used to
address overfitting and data imbalance. The model was evaluated using a sample from the
TrashNet dataset consisting of images labeled as organic and recyclable. The hybrid model,
optimized with the Adaptive Moment Estimator (AME), outperformed existing CNN models
(VGG-16, ResNet-34, ResNet-50, and AlexNet), achieving the highest precision of 95.45%
and the lowest training, validation, and testing losses. While these studies demonstrate
notable advancements in solid waste classification, they are limited to only two waste
categories, which constrains their applicability in real-world scenarios where mixed waste
streams are more complex and diverse.

The research [17] conducts a comparative analysis of different deep learning models,
specifically CNNs.The ResNeXt-101 model consistently outperformed others, achieving the
highest test accuracy of 89.62% using the TrashBox dataset. The study proposes deploying a
federated framework for visual detection of 7 trash classes at waste management facilities,
using a combination of four models: ResNeXt-101, ShuffleNetV2, ResNet-34, and
MobileNetV3-Large, to improve the waste classification accuracy in varied environmental
settings.

The review indicates that CNN-based deep learning models, particularly those employing
transfer learning, hybrid architectures, and ensemble techniques, have significantly advanced
the field of automated solid waste classification. While such models demonstrate promising
classification performance, challenges remain in handling visually similar waste types and
ensuring generalizability across diverse real-world environments. Future research should
focus on enhancing model accuracy by utilizing larger and more varied waste datasets.

3. METHODOLOGY

This section outlines the curated dataset and preprocessing strategies, details the pre-trained
models utilized, and describes the architecture of the proposed attention-based hybrid model.

3.1. Dataset Description

To develop and evaluate the proposed solid waste classification model, a comprehensive
dataset was curated by aggregating high-quality waste images from multiple sources. Data
collection included publicly available datasets from platforms such as Kaggle, Mendeley
Data, UC Irvine Machine Learning Repository, and Roboflow to ensure greater variability.
Table 1 lists the public datasets, their respective sources, and the corresponding waste
categories from which the dataset for this research was curated.

Table 1. Summary of Public Datasets Utilized

Dataset Waste Categories
Trashnet [18] Cardboard, Metal, Trash, Paper, Glass, Plastic
Cardboard, Food organics, Glass, Metal, Miscellaneous
RealWaste [19] trash, Paper, Plastic, Textile trash, Vegetation

Construction and demolition
waste object detection
dataset [20]

E-Waste Dataset [21]

Bricks, Concrete, Tiles, Wood, Pipes, Plastics, General
waste, Foaming insulation, Stones, Plaster boards

Battery, Keyboard, Microwave, Mouse, Television, Printer,
Washing Machine

Published By: National Press Associates Page 133
] Copyright [@ Authors



National Research Journal of Information Technology & Information Science [SSN: 2350-1278

Volume No: 12, Issue No: 2, Year: 2023 (July- December) Peer Reviewed & Refereed Journal (IF: 7.9)
PP: 129-152 Journal Website www.nrjitis.in

Paper, Cardboard, Biological, Metal, Plastic, Green-glass,

Garbage Classification [22] Brown-glass, White-glass, Clothes, Shoes, Batteries, Trash

Clase Congestion
Classification [23] Wood
Metal 4 Classification [24] Corroded Metal

The dataset comprises 22,000 images categorized into 12 types, representing major forms of
solid waste: glass, e-waste, clothes, shoes, plastic, cardboard, paper, construction waste,
medical waste, metal, organic waste, and trash. Table 2 presents the distribution of images
per category, highlighting the scale and structure of the dataset used in this study.

Table2. Waste image classes and their counts

Waste Classes Image Count
Construction 1480
Glass 3039
Clothes 2645
Trash 930
Ewaste 3000
Metal 1045
Organic 996
Medical 1380
Paper 1668
Shoes 2009
Cardboard 1825
Plastic 1983

Unlike many existing datasets that primarily consist of single-object images on plain white
backgrounds, the curated dataset used in this study incorporates a much broader range of
image types. It includes not only single-object images with clean, white backgrounds but also
real-world waste images captured in actual landfill environments. Additionally, the dataset
features images taken in diverse settings with varied lighting conditions and complex
backgrounds, often containing multiple waste objects. Figure 1 illustrates sample images
from each waste category, providing an overview of the visual diversity within the dataset.
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Cardboard Clothes

Construction Ewaste

-

Figure 1. Sample images of waste categories from the dataset

This diverse and extensive dataset forms the foundation for training and testing the hybrid
deep learning model, enabling more accurate classification of waste in realistic, unstructured
environments.

3.2. Data Preprocessing

To prepare the dataset for training the deep learning models, a comprehensive data
preprocessing pipeline was implemented. The dataset, consisting of 22,000 images across 12
solid waste categories, was initially organized in a dataframe linking each image file path
with its corresponding label. A method called stratified sampling was used to divide the
dataset into training and test sets in an 80:20 ratio, ensuring that each category was fairly
represented in both groups. The training set was further divided into training and validation
subsets using a stratified 70:10 split, maintaining balanced class distributions across all three
sets.

To enhance the model’s ability to generalize and perform well in varied real-world scenarios,
data augmentation techniques were applied to the training set. The augmentation strategy
included random rotations up to 60 degrees, horizontal and vertical shifts of up to 15%, zoom
variations of £20%, horizontal and vertical flips, slight shearing, brightness adjustments
ranging from 90% to 110%, and random channel shifts to simulate changes in lighting. Any
pixels introduced during these transformations were filled using the nearest neighbor method.
Additionally, all images were normalized using a model-specific preprocessing function to
ensure consistency with the pretrained architectures used.

Images were loaded in batches, which facilitated efficient real-time data augmentation and
ensured compatibility with large datasets stored on disk. All images were resized to 224x224
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pixels, and a batch size of 32 was used throughout. Labels were one-hot encoded using the
categorical mode, and shuffling was disabled to maintain a consistent order across
evaluations. While the training data was augmented, the validation and test sets were only
normalized, without any augmentations, to ensure fair and unbiased evaluation. This
preprocessing strategy contributed significantly to the accuracy of the hybrid deep learning
models in classifying diverse types of solid waste under varying conditions.

3.3. Pretrained Models

In this study, six state-of-the-art deep convolutional neural network architectures were
employed to develop an accurate and generalizable solid waste classification system:
DenseNet201, ResNet101, EfficientNetB7, MobileNetV2, InceptionV3, and ConvNeXtBase.
These architectures were chosen due to their proven effectiveness in various computer vision

tasks and their complementary design characteristics, which were later utilized to construct a
hybrid model.

DenseNet201 is designed with a densely connected architecture in which every layer is
directly linked to all earlier layers, allowing it to reuse features and enhance information flow
throughout the network. This helps to relieve the vanishing gradient problem, stimulate
feature reuse, improve feature propagation, and significantly reduce the number of
parameters [25]. ResNet101 uses deep residual learning with identity shortcut connections,
allowing very deep networks to be trained effectively by mitigating the degradation problem
[26]. EfficientNetB7 utilizes a compound scaling strategy that proportionally increases the
input resolution, width, and depth. This balanced approach enables the model to deliver high
accuracy while maintaining computational efficiency [27].

MobileNetV?2 is designed for mobile and resource-constrained environments. It uses inverted
residual blocks and depthwise separable convolutions, offering a good trade-off between
accuracy and computational cost [28]. Compared to its predecessor, MobileNetV2 is more
efficient and uses far fewer parameters. InceptionV3 utilizes factorized convolutions,
auxiliary classifiers, and label smoothing, making it efficient in terms of computation and
effective for diverse visual tasks [29]. ConvNeXtBase, a more current architecture,
modernizes convolutional networks with design decisions inspired by vision transformers,
enhancing its scalability and performance on huge datasets. It focuses on leveraging depth-
wise convolution and the ResNext family of convolutional neural networks to classify images
efficiently [30].

All models were initialized with ImageNet-pretrained weights and then tailored for waste
classification by replacing the top layers with a new classifier. To ensure uniformity, all
models used a fixed input size of 224 x 224 x 3. To balance generalization with task-specific
adaptation, only the top 20% of each model's layers were made trainable, with the remaining
80% frozen. This method allowed the models to keep core visual elements while adjusting
higher-level features for the solid waste dataset. Each model consisted of a Global Average
Pooling (GAP) layer, a dropout layer for regularization, and a dense output layer with 12
units corresponding to the 12 waste categories and softmax activation. To mitigate
overfitting, L2 regularization was incorporated into the dense layer.

The models were built and optimized using the Adam optimizer, configured with a learning
rate of 0.0001. The model was trained using the categorical cross-entropy loss function, an
appropriate choice for addressing classification tasks involving multiple categories. To
address the class imbalance in the dataset, class weights were computed and applied based on
the training label distribution. All models were trained over a maximum of 30 epochs, with
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early stopping and ReduceLROnPlateau callbacks to dynamically regulate the learning
process and prevent overfitting. This rigorous and consistent training framework allowed for
a reliable comparison across models and provided a strong foundation for developing a
hybrid model for solid waste classification.

3.4. Proposed Hybrid Model

A hybrid deep learning architecture was created by integrating two high-performing
convolutional neural networks, DenseNet201 and ConvNeXtBase, to improve the solid waste
classification accuracy and generalization. These two models were chosen for their higher
individual performance on the curated waste dataset, surpassing the other pretrained models
used in this work, such as ResNetl01, EfficientNetB7, MobileNetV2, and InceptionV3.
DenseNet201 was chosen for its densely connected architecture, which encourages feature
reuse and mitigates the vanishing gradient problem, allowing deeper networks to be trained
effectively. Its ability to preserve feature information across layers proved valuable in
identifying subtle patterns in waste images. ConvNeXtBase, a modernized convolutional
network inspired by Vision Transformers, was selected for its scalability and high
representational strength, particularly in diverse and complex image environments. Figure 2
presents a schematic overview of the proposed hybrid model, visually outlining the sequential
process followed in the methodology.

Dataset Curation

I

Data Preprocessing

|

Model Selection

|

Proposed Hybrid Model
DenseNet201+ConvNextBase
.
| Feature Extraction ‘

1
|Attention Mechanism‘

1
| Classification Head ‘

| Initial Model Training |

l

| Fine Tuning ‘
.
| Model Training |

l

Performance
Evaluation

Figure 2. Workflow diagram of the proposed Hybrid Model
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The proposed hybrid model integrates DenseNet201 and ConvNeXtBase using an attention-
based fusion mechanism. Both models were initialized with pretrained ImageNet weights,
and their convolutional backbones served as fixed feature extractors by freezing all their
layers during initial training. Features from both networks were extracted using GAP to
reduce spatial dimensions while preserving important features. The GAP outputs from both
models were concatenated and passed through a dense attention layer that learned to assign
importance weights to each feature stream. The attention mechanism used a softmax
activation to generate a pair of weights, which were then applied to the DenseNet and
ConvNeXt feature vectors, respectively. The weighted features were concatenated again to
form a fused representation that combines complementary information from both models.

The fused feature vector was passed through a classification head comprising a dropout layer
to prevent overfitting, a dense layer with 512 units and ReLU activation to introduce non-
linearity, a second dropout layer for further regularization, and a final dense layer with
softmax activation for classifying images into 12 waste categories. The model was trained in
two distinct phases to maximize stability and adaptability. The first phase was the initial
training or feature extraction phase, where all layers except the final classification layers were
frozen. Only the last 10 layers (mostly fully connected and dropout layers) were made
trainable. The model was compiled with the Adam optimizer (learning rate = le-3) and
trained for 20 epochs with categorical cross-entropy loss. Early stopping and
ReduceLROnPlateau callbacks were used to monitor validation loss and dynamically adjust
learning rates. The second phase was fine-tuning, where all layers of the model were
unfrozen to allow end-to-end learning. A lower learning rate (le-5) was used for stable
gradient updates. Training was conducted for an additional 30 epochs with the same early
stopping and learning rate reduction strategies.

This two-phase training strategy ensured that the model first stabilized on general visual
features before fine-tuning all layers to the specific characteristics of the waste classification
task.

4. RESULTS AND DISCUSSION

This section presents the performance evaluation of the proposed models against individual
models, followed by an analysis of inference time and a comparison with state-of-the-art
models.

4.1. Performance Analysis of Proposed Model

The accuracy results from different models show how well various deep learning
architectures perform and how well they can apply what they have learned to new data for
solid waste classification. Table 3 compares the training, validation, and testing accuracies of
DenseNet201, ResNet101, EfficientNetB7, ConvNextBase, MobileNetV2, InceptionV2, and
the proposed hybrid model.

Table 3. Accuracy Comparison of Individual and Hybrid Models

Model Training Accuracy (%) | Validation Accuracy | Test Accuracy (%)
(%)
DenseNet201 99.91 97.05 96.45
ResNet101 99.83 96.32 95.99
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EfficientNetB7 99.56 96.27 96.29
ConvNeXtBase 99.94 98.64 98.13
MobileNetV2 99.14 93.91 94.02
InceptionV3 99.75 95.18 94.97
Proposed 99.62 98.32 98.45

Hybrid

Among individual models, ConvNeXtBase achieved the highest test accuracy (98.13%),
closely followed by DenseNet201 (96.45%) and EfficientNetB7 (96.29%), indicating strong
generalization from training to unseen data. While MobileNetV2 and InceptionV3 showed
slightly lower test accuracies (94.02% and 94.97%, respectively), they still performed
reasonably well considering their computational efficiency. Notably, the proposed hybrid
model outperformed all individual models, achieving a test accuracy of 98.45%, validating
the effectiveness of ensemble learning in capturing diverse feature representations and
reducing generalization error. This suggests that hybrid architectures can significantly
enhance classification robustness in complex, multi-class tasks, such as waste categorization.
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Figure 5. Confusion matrix for EfficientNetB7 model
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Figure 6. Confusion matrix for ConvNextBase model
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Figure 7. Confusion matrix for MobileNetV2 model
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Figure 8. Confusion matrix for InceptionV3 model
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Figure 9. Confusion matrix for the Proposed Hybrid model
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Figures 3-9 represent confusion matrices for all the individual and hybrid models evaluated
on the test dataset. DenseNet201 model achieves exceptionally high correct predictions in
major categories, including construction, shoes, clothes, organic, paper, and cardboard,
showcasing the model’s strong feature extraction capability and robustness in handling
visually distinct materials. This highlights DenseNet201’s ability to learn discriminative
patterns, especially for categories with unique textures and structural features. The model also
performs reliably in more challenging categories. The confusion matrix also reveals that the
plastic category has 14 instances misclassified as glass, while the glass category has 10
instances misclassified as plastic, indicating significant visual overlap between these
materials. A few minor misclassifications appear in trash, which is inherently difficult due to
its heterogeneous composition and overlapping visual traits with other classes, such as
organic, paper, or plastic. Nonetheless, even in these complex classes, misclassification rates
remain low.

ResNetl01 model shows high precision in categories such as construction, clothes,
cardboard, medical, organic and paper, reflecting the model's effectiveness in learning deep
spatial features for visually distinctive classes. The diagonal dominance in these rows
indicates a reliable prediction rate. Notably, the ResNet101 confusion matrix highlights that
17 plastic instances were misclassified as glass and 9 glass instances as plastic, indicating a
strong visual resemblance that challenges accurate classification between these categories.
However, minor confusion is visible in more ambiguous categories. For example, plastic is
sometimes misclassified as glass or metal (17 and 5 instances, respectively), likely due to
shared visual textures such as shine or transparency. Similarly, inherently heterogeneous trash
category experience limited but noticeable confusion, with a few samples mispredicted as
glass, paper, or e-waste. The model also struggles slightly with metal, occasionally confusing
them with e-waste.

The confusion matrix for EfficientNetB7 shows high accuracy in classes such as construction,
clothes, medical, metal, shoes, and e-waste. The results indicate that the model effectively
captures spatial hierarchies and subtle visual features, benefiting from its compound scaling
architecture. Misclassifications are relatively few but occur primarily in visually overlapping
or heterogeneous classes. For instance, plastic waste is occasionally misidentified as glass or
paper (12 and 4 instances, respectively), likely due to visual similarities such as color or
transparency. Similarly, paper is misclassified as cardboard in 12 instances, likely due to
textural overlap. E-waste, while accurately classified in most cases, shows minor confusion
with medical, metal, and trash, reflecting shared metallic and plastic components in these
materials.

ConvNeXtBase model shows good classification accuracy across all 12 solid waste types,
demonstrating the model's ability to extract and generalize features. Notably, categories such
as construction, clothes, medical, metal and organic exhibit nearly perfect classification,
showing the model's ability to distinguish clear, class-specific patterns in the data. Minimal
confusion is observed in visually overlapping categories. For instance, glass is occasionally
misclassified as plastic (7 instances), likely due to transparency or reflective surface
similarities. E-waste shows minor confusion with metal and medical, reflecting shared
textures or components in such materials. Trash is one of the most diverse categories and sees
a few misclassifications as glass, organic, paper and plastic, highlighting the inherent
ambiguity in mixed or poorly segregated waste. The model also maintains high precision in
categories with subtle visual differences, such as metal, medical, and organic, where the
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correct classifications are dominant and misclassifications are limited to 1-3 instances across
a few neighboring classes.

The confusion matrix for the MobileNetV2 model reveals reasonably good classification
performance across most waste categories but indicates relatively more confusion compared
to heavier models like ConvNeXtBase or EfficientNetB7. MobileNetV2's lightweight
architecture offers speed and efficiency, but at the cost of slightly reduced precision,
especially in visually similar categories. Most classes, such as construction, organic clothes,
and cardboard, are well classified with minimal errors. However, e-waste and glass show
increased confusion. Both glass and plastic are highly confused with 28 instances of plastic
misclassified as glass, showing the model's difficulty identifying transparent or reflective
materials.

The InceptionV3 model indicates that it effectively distinguishes several waste categories
with high accuracy, particularly construction, clothes, cardboard, and organic. Shoes and
medical also show reliable predictions. However, some confusion is evident between visually
similar categories. Notably, 13 plastic samples are misclassified as glass, and 12 glass
samples are confused with paper, likely due to overlapping visual characteristics such as
transparency and reflective surfaces. E-waste is occasionally misclassified as medical waste,
which can be attributed to the plastic material used in both. Metal is also confused with e-
waste and glass, possibly due to similar shiny textures. Overall, InceptionV3 performs well,
with minor misclassifications primarily between categories that share visual features,
suggesting potential improvements through targeted data augmentation or enhanced feature
discrimination techniques.

The confusion matrix for the new hybrid model that combines DenseNet201 and
ConvNeXtBase shows great classification results for almost all types of waste. The model
accurately classifies a high number of instances for classes such as cardboard, clothes,
ewaste, shoes, construction, paper, medical, metal, organic, plastic, and glass, indicating
strong discriminative ability for these types. For instance, categories such as clothes and
organic show excellent performance with only 1 instance of clothes misclassified as trash and
1 instance of organic misclassified as ewaste. Misclassifications are generally low and
scattered, often involving very few instances, which suggests that the model generalizes well
without significant class confusion. Overall, the hybrid approach has led to improved
robustness and precision, especially in differentiating between visually similar waste types.

The comparative analysis of the confusion matrices across various deep learning models
highlights the strengths and limitations of each in classifying 12 categories of solid waste.
Among the models, the hybrid model combining DenseNet201 and ConvNeXtBase
demonstrates the most robust and balanced performance, achieving high accuracy in almost
all categories with minimal confusion, particularly excelling in complex classes like trash,
organic, and medical. DenseNet201 also performs exceptionally well, especially in categories
with distinct textures such as clothes and construction, due to its dense connectivity and
strong feature extraction capabilities. ConvNeXtBase, despite being slightly lighter, achieves
near-perfect classification in categories such as glass, plastic, construction, cardboard, and
clothes due to its efficient feature generalization and modern architecture.

EfficientNetB7 leverages its compound scaling strategy to deliver reasonable classification
performance, particularly in visually complex categories like plastic and glass, due to their
similar textures and overlapping visual features. ResNet101 exhibits reliable performance
across most categories but suffers slightly more from confusion in classes such as plastic,
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metal, and trash, where reflective or heterogeneous features pose a challenge to the model.
InceptionV3 maintains solid accuracy in many categories but displays noticeable confusion
between glass, plastic, and metal, most likely due to common visual characteristics such as
glossiness and transparency. Finally, MobileNetV2, while efficient and lightweight, exhibits
more misclassifications in visually comparable classes, indicating a restricted representational
capability when compared to deeper architectures. Overall, the proposed hybrid model
emerges as the most effective, combining the strengths of both architectures to deliver high
accuracy and minimal misclassification across both distinct and ambiguous waste categories.

Table 4. Performance Metrics of DenseNet201 Model

Class Precision Recall F1-Score
Cardboard 0.98 0.98 0.98
Clothes 0.99 0.99 0.99
Construction 1.00 1.00 1.00
Ewaste 0.96 0.96 0.96
Glass 0.97 0.97 0.97
Medical 0.95 0.92 0.94
Metal 0.95 0.97 0.96
Organic 0.96 0.95 0.96
Paper 0.95 0.96 0.96
Plastic 0.93 0.94 0.94
Shoes 0.97 1.00 0.98
Trash 0.94 0.87 0.90

Table 5. Performance Metrics of ResNet101 Model

Class Precision Recall F1-Score
Cardboard 0.99 0.97 0.98
Clothes 0.99 0.98 0.99
Construction 1.00 1.00 1.00
Ewaste 0.95 0.97 0.96
Glass 0.97 0.95 0.96
Medical 0.95 0.92 0.94
Metal 0.92 0.95 0.93
Organic 0.97 0.93 0.95
Paper 0.95 0.96 0.95
Plastic 0.92 0.93 0.93
Shoes 0.96 0.99 0.97
Trash 0.89 0.92 0.90

Table 6. Performance Metrics of EfficientNetB7 Model

Class Precision Recall F1-Score
Cardboard 0.99 0.95 0.97
Clothes 0.98 0.98 0.98
Construction 1.00 1.00 1.00
Ewaste 0.96 0.98 0.97
Glass 0.97 0.96 0.97
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Medical 0.96 0.91 0.93
Metal 0.92 0.95 0.93
Organic 0.97 0.96 0.96
Paper 0.95 0.98 0.96
Plastic 0.95 0.92 0.94
Shoes 0.97 1.00 0.98
Trash 0.91 0.89 0.90
Table 7. Performance Metrics of ConvNextBase Model

Class Precision Recall F1-Score
Cardboard 0.98 0.98 0.98
Clothes 1.00 0.99 0.99
Construction 1.00 1.00 1.00
Ewaste 0.98 0.99 0.98
Glass 0.98 0.99 0.98
Medical 0.98 0.96 0.97
Metal 0.96 0.97 0.96
Organic 0.99 0.96 0.98
Paper 0.98 0.98 0.98
Plastic 0.98 0.95 0.97
Shoes 0.99 1.00 0.99
Trash 0.93 0.96 0.94

Table 8. Performance Metrics of MobileNetV2 Model

Class Precision Recall F1-Score
Cardboard 0.96 0.96 0.96
Clothes 0.98 0.98 0.98
Construction 1.00 1.00 1.00
Ewaste 0.94 0.95 0.94
Glass 0.96 0.91 0.94
Medical 0.91 0.91 0.91
Metal 0.89 0.92 0.91
Organic 0.98 0.90 0.94
Paper 0.93 0.93 0.93
Plastic 0.87 0.92 0.89
Shoes 0.95 0.98 0.96
Trash 0.86 0.83 0.84

Table 9. Performance Metrics of InceptionV3 Model

Class Precision Recall F1-Score
Cardboard 0.97 0.96 0.96
Clothes 0.98 0.99 0.98
Construction 1.00 1.00 1.00
Ewaste 0.95 0.95 0.95
Glass 0.96 0.95 0.95
Medical 0.94 0.90 0.92
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Metal 0.87 0.93 0.90
Organic 0.97 0.93 0.95
Paper 0.92 0.94 0.93
Plastic 0.93 0.91 0.92
Shoes 0.97 0.99 0.98
Trash 0.86 0.88 0.87
Table 10. Performance Metrics of Proposed Hybrid Model

Class Precision Recall F1-Score
Cardboard 0.99 0.96 0.98
Clothes 1.00 0.99 1.00
Construction 1.00 1.00 1.00
Ewaste 0.99 1.00 0.99
Glass 0.99 0.98 0.99
Medical 0.99 0.98 0.98
Metal 0.98 0.99 0.98
Organic 0.99 0.97 0.98
Paper 0.96 0.99 0.97
Plastic 0.96 0.97 0.97
Shoes 1.00 1.00 1.00
Trash 0.95 0.93 0.94

Tables 4-10 present performance metrics for DenseNet201, ResNet101, EfficientNet]21,
ConvNextBase, MobileNetV2, InceptionV3, and the proposed Hybrid model, including
precision, recall, and F1 Score. DenseNet201 model achieved a weighted average accuracy,
precision, recall, and Fl-score of 0.96 on the test dataset, as illustrated in Table 4. It
performed exceptionally in categories such as construction (F1-score: 1.00), clothes (0.99),
and shoes (0.98). High F1-scores were also observed for cardboard, glass, metal, and e-waste
(0.94-0.98), reflecting strong feature discrimination. Plastic, paper, and organic waste were
classified reliably, despite some visual overlap. Lower performance was seen in medical
waste (0.94) and trash (F1: 0.90), with trash showing the lowest recall (0.87), likely due to its
heterogeneous nature. Overall, the model shows robust classification with minor
misclassification in ambiguous classes.

According to the metrics in Table 5, ResNetl0l model performed exceptionally well in
classifying construction (F1-score: 1.00), clothes (0.99), and cardboard (0.98), indicating
effective learning of distinct features. High F1-scores were also observed for e-waste (0.96)
and glass (0.96), despite minor confusion with similar classes. Metal, plastic, and medical
categories showed slightly reduced performance, likely due to visual overlap with e-waste.
Trash achieved an Fl-score of 0.90, reflecting moderate difficulty due to its mixed
composition. The EfficientNetB7 model achieved perfect scores (Fl-score: 1.00) in
classifying construction waste and performed very well for shoes (0.98), clothes (0.98), and
e-waste (0.97), as reported in Table 6, reflecting its ability to capture complex and diverse
features. Categories such as glass, paper, organic, and cardboard also showed high F1-scores,
indicating reliable classification of visually distinctive materials. Slightly lower scores for
medical, metal, plastic, and trash suggest occasional misclassifications due to visual
similarities.
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Table 7 shows the performance metrics of ConvNeXtBase model , which attained a weighted
average precision, recall, and F1-score of 0.98 on the test dataset. It achieves perfect or near-
perfect results in categories such as construction (1.00), clothes (0.99), shoes (0.99), and e-
waste (0.98), showcasing its robust feature extraction capabilities. Glass, cardboard, and
paper also show very high F1 scores (0.98), indicating effective handling of materials with
reflective or textural patterns. Medical, metal, organic, and plastic categories yield slightly
lower yet strong F1 scores. Trash, despite its visual diversity, is well classified, reflecting
ConvNeXt’s strength even in challenging classes.

MobileNetV2 model achieved weighted precision, recall, and F1-score of 0.94 on the test
dataset , as shown in Table 8. The model performed exceptionally in the construction class
with a perfect score of 1.00 and shows strong results in clothes (0.98), shoes (0.96), and
cardboard (0.96). Moderate Fl-scores are observed in e-waste, organic, glass, and paper,
though recall is slightly lower in categories such as glass and organic. Performance dips
further in medical, metal, and especially in plastic and trash, highlighting the model's
challenges with visually overlapping or heterogeneous materials. As reported in Table 9, the
InceptionV3 model achieved weighted precision, recall, and Fl-score of 0.95 on the test
dataset. It obtained a perfect classification for construction (1.00) and high Fl-scores in
clothes (0.98), shoes (0.98), and cardboard (0.96), showing effective feature learning for
visually distinct categories. E-waste, glass, and organic waste also performed well with F1
scores of 0.95, though slight confusion is evident in overlapping textures. Medical and plastic
categories show moderate performance, while metal and trash had the lowest F1-scores,
reflecting difficulty in distinguishing complex or visually similar materials. Overall, the
model generalizes well.

The hybrid model achieved a weighted precision, recall, and F1-score of 0.98 on the test
dataset, as reported in Table 10, reflecting excellent overall performance. Construction and
shoes were classified perfectly (F1-score: 1.00), while categories such as clothes, ewaste,
glass, metal, and medical also achieved near-perfect F1-scores (0.98—1.00), indicating strong
discriminative capability across diverse materials. While paper and plastic maintained an F1-
score of 0.97, showing minimal misclassification. Overall, the hybrid approach demonstrates
superior generalization and robust classification across all 12 waste categories.

The classification results demonstrate that all models perform well across the 12 solid waste
categories, with varying degrees of accuracy. The Hybrid and ConvNextBase models deliver
the best results, each achieving a weighted Fl-score of 0.98. They show excellent
generalization and robust performance in classes such as cardboard, clothes, construction,
ewaste, and shoes, with the hybrid model achieving perfect F1 scores for clothes,
construction, organic and shoes. Among the other models, DenseNet201, ResNet101, and
EfficientNetB7 each reach an F1-score of 0.96, performing strongly in distinct classes such as
construction, clothes, and shoes, but showing slight weaknesses in more ambiguous
categories like trash and medical waste. InceptionV3 follows closely with an F1 score of
0.95, maintaining good balance but struggling with metal and trash. MobileNetV2, though
efficient, shows the lowest F1-score (0.94), performing well in simpler categories but facing
challenges in classifying plastic and trash, likely due to visual overlap. Overall, the hybrid
model stands out as the most reliable choice for solid waste classification due to its superior
accuracy and consistency across all waste categories.

4.2. Analysis of Inference Time
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The models were trained and evaluated using Kaggle’s dual NVIDIA T4 GPU environment,
enabling efficient handling of image data. As observed during inference, the proposed hybrid
model achieved a total inference time of 69.29 seconds on the test dataset. This corresponds
to an inference time of approximately 0.0157 seconds per image, translating to an inference
speed of 64 images per second. These results indicate that the proposed hybrid model is not
only accurate but also computationally efficient, making it well-suited for real-time or near
real-time deployment in intelligent waste management systems.

4.3. Comparative Analysis of State-of-the-art models

The proposed hybrid model showed excellent classification ability, achieving a test accuracy
of 98.45% on a dataset of 22,000 images, including 12 waste categories. This performance
surpasses several existing state-of-the-art models: ResNet50 [7] reported an accuracy of
92.4%, ResNetl8 [8] achieved 87.8%, DenseNet169 [10] attained 94.9%, and ResNeXt-101
[17] recorded 89.62%, each classifying waste across 4 to 7 categories. In comparison, other
models such as LADS [14] (94.53%), DCNN [15] (93.28%), and Hybrid CNN-LSTM [16]
(95.45%) primarily focus on binary classification of organic and recyclable waste, limiting
their adaptability in more complex, real-world environments. The proposed hybrid model’s
superior accuracy is driven by the attention-based fusion of DenseNet201 and
ConvNeXtBase, effectively combining dense feature reuse and modern convolutional
efficiency to enhance the classification of heterogeneous and visually similar waste types.

5. CONCLUSION AND FUTURE WORK

This research presents a comprehensive approach to solid waste classification using deep
learning, intending to enhance urban sustainability and promote effective environmental
conservation. A curated and diverse dataset comprising 12 categories of solid waste and a
total of 22000 was compiled from multiple public waste image datasets. The dataset includes
single-object images with clean backgrounds and real-world images captured under varied
environmental conditions, ensuring model generalizability.

Multiple state-of-the-art pretrained convolutional neural networks—DenseNet201,
ResNet101, EfficientNetB7, MobileNetV2, InceptionV3, and ConvNeXtBase were fine-tuned
and evaluated on the curated dataset. ConvNeXtBase and DenseNet201 achieved the highest
test accuracies of 98.13% and 96.45%, respectively, indicating their strong capacity to extract
meaningful features from complex waste imagery. Building upon these findings, a novel
hybrid CNN model was proposed, integrating DenseNet201 and ConvNeXtBase via an
attention-based fusion mechanism. This model effectively combined the complementary
strengths of both architectures—DenseNet’s feature reuse and gradient flow with
ConvNeXt’s modern convolutional efficiency and scalability. The hybrid model achieved a
test accuracy of 98.45%, outperforming all individual models and demonstrating superior
classification performance.

These results highlight the potential of deep learning-based hybrid techniques in automating
solid waste classification with high accuracy, which can significantly aid smart waste
management systems in real-world scenarios. The proposed technology not only enhances
waste sorting precision but also promotes more sustainable urban practices by allowing for
effective recycling and disposal.

Future work may involve real-time deployment of the hybrid model in edge devices,
exploring more lightweight architectures for resource-constrained environments, and
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expanding the dataset to include additional subcategories of waste and more geographically
diverse samples for broader generalization.
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